Počkejte prosím...

Ústav chemického inženýrství

Vypsané disertační práce

(NÁVRH) Syntéza biologicky rozložitelných amfifilních blokových kopolymerů a jejich aplikace ve formulaci pro dodávání léčiva

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Studijní program: Chemie

Anotace

(Jedná se o návrh práce, který čeká na schválení garantem programu). Amfifilní blokové kopolymery (ABP) na bázi PLA nesoucí navázané reaktivní skupiny, jako jsou hydroxylové, karboxylové a aminové funkční skupiny, budou syntetizovány. Volné reaktivní skupiny budou použity v dalším kroku pro další modifikaci. V závislosti na požadovaném typu funkcionalizace lze použít jednoduché a efektivní metody. Potom mohou být připraveny různé typy amfifilních blokových kopolymerů nesoucích reaktivní skupiny, jako jsou aminokyseliny. Tyto ABP na bázi PLA umožní přípravu vysoce mísitelných systémů léčivo/polymer. Takové materiály mohou najít uplatnění při přípravě amorfních pevných disperzí pro dodávání léčiv.

(NÁVRH) Vývoj vysoce výkonných flexibilních superkapacitorů na bázi nanocelulózy a vodivých materiálů

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

(Jedná se o návrh práce, který čeká na schválení garantem programu). Cílem tohoto projektu je navrhnout nový typ flexibilních a lehkých elektrod založených na udržitelných materiálech. Elektrody budou použity při vývoji výkonných superkapacitorů s flexibilní strukturou a vysokou kapacitou. Přírodní celulózová nanovlákna (CNF) budou kombinována s elektricky vodivými polymery (ECP) a následně použita jako matrice pro přípravu elektrod superkapacitorů. CNF tvoří mechanický skelet schopný vysoké deformace a zároveň šablonu pro chemickou funkcionalizaci povrchu elektrody. Budou také zkoumány nové metody kompatibilizace polymerů a nanovláken. Cílem bude kombinovat vzájemně odlišné materiály s různými vlastnostmi do formy elektrod na bázi CNF-ECP vykazující vysokou kapacitu, flexibilitu a tepelnou stabilitu. Vzniklé kompozity budou použity při přípravě a testování prototypů superkapacitorů.

Acidorezistentní formy prazolů pro účinnější léčbu žaludečních vředů

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Studijní program: Léčiva a biomateriály

Advanced formulation approaches for topical delivery

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Studijní program: Léčiva a biomateriály

Advanced formulation with biologically sourced microparticles

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anomalies of aqueous solutions of simple alcohols and their consequences for industrial applications

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anomálie vodných roztoků jednoduchých alkoholů a jejich důsledky pro průmyslové aplikace

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Short-chain alcohols (C1-C3) are used as solvents, co-solvents or co-surfactants in many industrial, biotechnological and pharmaceutical applications and, at the same time, they are of great interest due to their atypical physico-chemical properties over a broad range of composition. They exhibit anomalous behaviour when mixed with water, which has been proven to be a result of the ordered formation of water and alcohol molecules. The result is a significant drop in surface tension, multiple increases in viscosity and a dramatic change in bubble surface mobility and bubble coalescence. In these systems, additional added surfactants do not behave in the common manner. At the moment there are only few studies of the overlap of the mentioned anomalies into real chemical or biological processes. The aim of this project is study the behaviour of ethanol-water and propanol-water mixtures in aerated systems. The basis will be the visualization of processes (high-speed camera) and measurement of surface tension, coalescence and interphase viscosity. In three-phase systems, bubble adhesion and droplet spreading will be studied.

Bioinženýrské a farmaceutické využití lipozomů a jejich kompozitů

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Studijní program: Léčiva a biomateriály

Combined dissolution and permeation platform for the screening of formulation prototypes

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Diagnostika dvoufázového toku v mikrokanálech

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: Ing. Jaroslav Tihon, CSc.

Anotace

Cílem projetku je experimentální studium charakteru dvoufázového proudění (kapalina-plyn) v kanálech mikrometrických rozměrů. Naše pozornost se zaměří na zmapování tokových režimů pro různé geometrie kanálků (např. pravoúhlé křížení, T-větvení, náhlé rozšíření) i různé typy kapalin (Newtonské, viskoelestické, či pseudoplastické). Originální experimentální technika vyvinutá v našem oddělení, elektrodifúzní diagnostika proudění, bude využita jak pro určení směru a rychlosti proudění v blízkosti stěny, tak i pro detekci průchodu bublin. Dodatečné informace o proudění budou získány pomocí vizualizačních experimentů využívajících špičkovou rychloběžnou kameru Redlake MotionPro X3, popřípadě pomocí měření rychlostních polí metodou PIV (Particle Image Velocimetry).
Projekt je vhodný pro absolvent(a/ku) chemicko-inženýrského studia nebo studia jiného typu s technickým zaměřením. Uchazeč by měl být experimentálně zručný a měl by mít alespoň základní znalosti z oblasti hydrodynamiky. Základním předpokladem je ovšem chuť do samostatné výzkumné práce. Případný zájemce se bude moci opřít o naše bohaté zkušenosti jak v oblasti automatizovaných experimentálních měření s následným zpracováním dat (LabView), tak i řešení složitých hydrodynamických úloh (MatLab, Mathematica).

Dynamika vícefázových soustav: kapalina-plyn-tuhá fáze

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Vícefázové disperzní soustavy se vyskytují všude kolem nás, jak v přírodě, tak v technologiích a průmyslových aplikacích (sedimentace, fluidace, plynokapalinové soustavy - probublávané kolony, flotační systémy, atd.). Díky své složitosti a aplikačnímu potenciálu představují seriózní výzvu pro základní výzkum v oboru vícefázové hydrodynamiky. V této disertační práci budou experimentálně i teoreticky studovány klíčové procesy probíhající v disperzích na malém měřítku (coalescence bublin, kolize bublina-částice v kapalině) a jejich důsledky pro režimy proudění disperzí ve velkém měřítku (probublávané kolony, flotační nádrže, apod.). Získané poznatky budou uplatnitelné v průmyslových aplikacích různého typu (chemický průmysl, ropný, potravinářský, metalurgický, farmaceutický, environmentální, atd.).

Dělení racemických směsí pomocí membránových procesů

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: Ing. Pavel Izák, Ph.D. DSc.

Anotace

Cílem doktorandské práce bude dělení racemických směsí membránovými separačními procesy. Racemické směsi obsahují stejné množství L a D enantiomerů. Jednotlivé enantiomery mají tytéž fyzikálně-chemické vlastnosti v achirálním prostředí, a proto je velmi obtížné je vzájemně odseparovat. Nicméně v lidském organismu mají L a D enantiomery jiné účinky a D enantiomery mohou být zdraví škodlivé. Ph.D. práce bude zaměřena na vývoj nových membrán a separačních technik pro selektivní separaci enantiomerů z racemických směsí s praktickými aplikacemi, především ve farmaceutickém, potravinářském nebo agrochemického průmyslu. U kandidáta doktorské práce bude vyžadováno zpracování podrobné rešerše zahraniční literatury v dané problematice (nutnost aktivní znalosti anglického jazyka), samostatné měření a zpracování výsledků a ve spolupráci se školitelem i napsání publikací do zahraničních periodik.

Elektrochemická úložiště energie na bázi chemie kov-vzduch

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: prof. Dr. Ing. Juraj Kosek

Anotace

Společnost se stále více začíná přiklánět k získávání elektrické energie z obnovitelných zdrojů a k jejímu skladování do období její potřeby. Bohužel hlubší rozmach stávajících technologií pro ukládání elektrické energie, jako jsou například lithium-iontové baterie či vanadové redoxní průtočné baterie, je brzděn vysokou cenou základních surovin pro jejich výrobu. Jednou z cest, jak na trh přinést levné technologie pro akumulaci elektrické energie, je využít coby elektroaktivní materiály nejhojněji zastoupené chemické prvky či sloučeniny v zemské kůže. Těmi jsou běžně požívané kovy jako železo, zinek, hliník či hořčík, ale také překvapivě i vzdušný kyslík. Nosným tématem této práce bude výzkum v oblasti elektrochemického systému zinek-vzduch. Pozornost se bude věnovat studiu a optimalizaci jednotlivých komponent systému. Důraz bude kladen na komplexní pochopení dějů probíhajících na zinkové a kyslíkové elektrodě během nabíjení a vybíjení pomocí pečlivě navržených experimentů či matematických modelů. Zároveň bude optimalizována struktura zinko-vzduchové technologie z hlediska jejího uspořádání (sekundární baterie/regenerační palivový článek, mono-/bi-funkční elektrody), tak aby byla zajištěna dlouhodobá stabilita navrženého systému. Výstupem doktorské práce bude nejen série publikací, ale také praktické poznatky vedoucí ke zdokonalení technologií na bázi kov-vzduch a to vzhledem k energetické účinnosti, životnosti a maximálnímu měrnému výkonu. Na projektu bude doktorand spolupracovat nejen v týmu doktorandů a post-doků na našem pracovišti, ale také s partnery z několika firem a univerzit. Info: tel. 220 44 3296, č.dv. B-145, e-mail jkk@vscht.cz, web http://kosekgroup.cz

Enzymy katalyzované reakce rostlinných olejů v superkritickém CO2

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: Ing. Marie Sajfrtová, Ph.D.

Anotace

Výzkum enzymatických reakcí v superkritickém oxidu uhličitém (scCO2), které spojují výhody specificity enzymů, rychlé difúze v superkritických tekutinách a zdravotní nezávadnosti scCO2, je poměrně nový a perspektivní obor. V tomto projektu jsou enzymatické reakce rostlinných olejů v scCO2 využity k obohacení reakčních produktů o w-3 a w-6 polynenasycené (esenciální) mastné kyseliny, potřebné složky potravy. Budou studovány reakce olejů katalyzované regiospecifickým enzymem a metody oddělení frakce obohacené esenciálními mastnými kyselinami z reakční směsi. Cílem je navrhnout „zelený“ postup přípravy obohacených rostlinných olejů pomocí scCO2, který bude integrovat extrakci oleje ze semen, jeho reakci a frakcionaci reakční směsi.

Experimentální a modelovací studie difúzních a relaxačních procesů v polymerech

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: prof. Dr. Ing. Juraj Kosek

Fluidní procesy zpracování nano-suspensí

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Hydrogelové mikročástice s některými vlastnostmi červených krvinek

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: RNDr. Ivan Řehoř, Ph.D.

Anotace

Červené krvinky mají diskovitý tvar zhruba 10 μm v průměru a dokáží obíhat v k revním řečišti, přestože kapiláry nejsou tlustší, než 5 μm. Tato unikátní vlastnost je dána jejich tvarem, mechanickými vlastnostmi a povrchem. Cílem tohoto projektu je připravit hydrogelové mikročástice, které napodobují tyto vlastnosti skutečných krvinek. Metoda stop-flow litografie bude použita pro syntézu hydrogelů tvaru krvinek z biodegradovatelných polymerů takového složení, že mechanické vlastnosti výsledných částic budou blízké skutečným krvinkám. V navazujícím projektu bude zkoumána schopnost hydrogelů cirkulovat v krevním řečišti. Vrcholným cílem celého projektu bude navázat do struktury hydrogleu fluorescenční senzor, sledující medicínsky relevantní parametr (pH, koncentrace glukózy...) a číst jeho signál zkrz kůži, detektorem umístěným vně pacientova těla.

Hydrogely a jejich nanokompozity

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: Ing. Jaroslav Tihon, CSc.

Anotace

Hydrogely jsou zesíťované polymery obsahující vysoký podíl vody. Mohou být využívány například v medicíně (kontaktní čočky, obvazový materiál, tkáňové inženýrství) a v čištění odpadních vod (mají vysokou schopnost adsorbovat organická barviva). Zakomponováním vhodných nanočástic většinou anorganického původu do struktury hydrogelů vznikají nanokompozity, které často vykazují ještě lepší fyzikálně chemické vlastnosti než původní hydrogely – typicky se zvyšuje pevnost, mění se obsah zachycené vody, adsorpční schopnost pro různé polutanty nebo naopak schopnost uvolňovat léčiva. V tomto projektu bude studována příprava nových hydrogelových nanokompozitů, jejich fyzikálně chemické vlastnosti a možnosti jejich využití, ať už v oblasti medicíny nebo životního prostředí. Projekt je vhodný pro absolventa či absolventku chemicko-inženýrského, fyzikálně-chemického nebo jiného technického oboru. Experimentální zručnost je vítána. Hlavním předpokladem je však chuť do výzkumné práce.

Kontinuální příprava vícekomponentních nosičů pro doručování léčiv

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Matematické modelování elektrochemických článků

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: prof. Dr. Ing. Juraj Kosek

Anotace

Rozvoj obnovitelných zdrojů energie (větrných turbín a fotovoltaiky) jakož i elektromobilů klade vysoké nároky na ukládání elektrické energie buď ve stacionárních distribuovaných úložištích energie nebo v bateriích s vysokou měrnou energií a dostatečným výkonem. Vývoj technicky, ekologicky, bezpečnostně i cenově vyhovujících řešení pro tyto aplikace probíhá primárně empiricky. Cílem tohoto projektu je vyvinutí modelů několika elektrochemických článků, které umožní lépe pochopit praktická omezení jednotlivých článků, otestovat různé hypotézy a systematicky vyvíjet lepší elektrochemické články. Jedná se o vysoce aktuální Ph.D. projekt navazující na experimentální výzkum v naší výzkumné laboratoři. Řešením modelových rovnic budou jednak koncentrační a potenciálové profily, jednak zátěžové a vybíjecí charakteristiky různých baterií. Soustředíme se na následující elektrochemické systémy: (i) redoxní průtočné baterie, (ii) klasické olověné akumulátory, (iii) zinko-vzduchové sekundární baterie či palivové články. V modelování budou využity také meso-skopické prostorově 3D modely navazující na naše předchozí aktivity. Tak bude možno například simulovat transport kyslíku a jeho redukci na vzduchové porézní elektrodě baterie zinek-vzduch či dendritický růst zinku při jeho depozici. Doktorand(ka) se kromě modelování seznámí s teoretickými pasážemi vztahujícími se k termodynamice koncentrovaných elektrolytů a transportu iontů v těchto elektrolytech, popisem porézních či pastovaných elektrod, vlivem částečné rozpustnosti některých látek na činnost elektrochemických cel, fázovými přeměnami v blízkosti povrchu elektrod atd. Současně bude úzce spolupracovat s experimentální částí laboratoře na testování různých hypotéz. Na projektu bude spolupracovat nejen v týmu doktorandů a post-doků na našem pracovišti, ale také s partnery z firem a univerzit.

Matematické modelování mikrofluidních separátorů pro dělení racemických směsí

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Mikrofluidní zařízení jsou charakterizována velkým poměrem velikosti mezifázové plochy a vnitřního objemu. Toho je možno využít při separacích chemických látek pomocí extrakce nebo membránových procesů. Separace opticky aktivních látek, často důležitých farmaceutických nebo potravinářských produktů, na membránách nebo sorbentech s ukotveným chirálním selektorem představuje výzvu pro současné chemické inženýrství. Nástroje matematického modelování mohou vést k lepšímu pochopení komplexních dějů v takových zařízeních a následně k designu efektivně pracujících mikrofluidních separátorů. Hlavními cíli navrhovaného tématu jsou: Na základě předběžných a dostupných experimentálních dat bude vytvořen matematicko-fyzikální popis transportu hmoty a hybnosti v mikrofluidních zařízeních s ukotveným chirálním selektorem. Budou vytvořeny matematické modely dějů v různých prostorových měřítcích, které budou zahrnovat popis transportu dělených složek difúzí, konvekcí a elektromigrací. Modely budou numericky analyzovány. V parametrickém prostoru budou hledány hodnoty parametrů, které zajistí vysokou separační účinnost a vysokou produktivitu mikrofluidního systému. Školící pracoviště disponuje kvalitní výpočetní technikou. Předpokládá se podíl doktoranda/ky na řešení grantových projektů a aktivní účast na mezinárodních vědeckých konferencích.

Mathematical modeling of microfluidic devices for separation of racemic mixtures

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Mikrofluidní zařízení jsou charakterizována velkým poměrem velikosti mezifázové plochy a vnitřního objemu. Toho je možno využít při separacích chemických látek pomocí extrakce nebo membránových procesů. Separace opticky aktivních látek, často důležitých farmaceutických nebo potravinářských produktů, na membránách nebo sorbentech s ukotveným chirálním selektorem představuje výzvu pro současné chemické inženýrství. Nástroje matematického modelování mohou vést k lepšímu pochopení komplexních dějů v takových zařízeních a následně k designu efektivně pracujících mikrofluidních separátorů. Hlavními cíli navrhovaného tématu jsou: Na základě předběžných a dostupných experimentálních dat bude vytvořen matematicko-fyzikální popis transportu hmoty a hybnosti v mikrofluidních zařízeních s ukotveným chirálním selektorem. Budou vytvořeny matematické modely dějů v různých prostorových měřítcích, které budou zahrnovat popis transportu dělených složek difúzí, konvekcí a elektromigrací. Modely budou numericky analyzovány. V parametrickém prostoru budou hledány hodnoty parametrů, které zajistí vysokou separační účinnost a vysokou produktivitu mikrofluidního systému. Školící pracoviště disponuje kvalitní výpočetní technikou. Předpokládá se podíl doktoranda/ky na řešení grantových projektů a aktivní účast na mezinárodních vědeckých konferencích.

Membránová separace primárních produktů fermentace

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: doc. Dr. Ing. Tomáš Moucha

Anotace

V biotechnologiích jsou často využívány vsádkové procesy, při kterých je používána živá kultura / biomasa. Biomasa často vytváří látky / produkty metabolismu, kterými je sama poškozována, viz například alkoholové kvašení. Příprava sterilního prostředí a optimálních počátečních podmínek bioprocesu bývá časovou i finanční zátěží celé výrobní technologie. Je tedy žádoucí usilovat o kontnualizaci takových procesů. Jedním z opatření pro zajištění kontinualizace technologie může být průběžné odstraňování primárního produktu bioprocesu, například výše zmíněného alkoholu. Tento záměr obnáší návrh dvoustupňového separačního zařízení, kdy je nejdříve třeba separovat kulturu / biomasu, tedy pevnou dispergovanou fázi, od kapaliny a následně z homogenní kapalné fáze separovat pro biomasu nebezpečné složky. Ve druhém stupni separace lze použít například pervaporaci. Cílem dizertační práce je experimentální vývoj separační technologie s využitím dvou stupňů membránové separace - mikrofiltrace a pervaporace. Práce bude vedena z pohledu chemicko-inženýrského vývoje, tj. budou hledány závislosti dosahovaných separačních parametrů, jako jsou selektivita, permeabilita, apod., na provozních parametrech, jako například tlak, průtok, teplota, složení nástřiku. K popisu závislostí budou využity checko-inženýrské veličiny jako polarizační modul membrány, či koeficient přestupu hmoty. Na pracovišti jsou k dispozici nové moduly pro uvedené membránové separace, které byly za účelem experimentálního vývoje technologie zakoupeny v loňském roce. Řešitel se seznámí jak se standardními membránovými moduly v průmyslových technologiích používanýmmi, tak originální sestavou vyrobenou profesionální firmou podle specifických požadavků pracoviště. Kromě toho, že se student seznámí s moderními technologiemi zaváděnými v průmyslu i s moderními zařízeními, bude pracovat v kolektivu studentů a akademických výzkumných pracovníků se zkušenostmi z průmyslové sféry. Doktorské studium s nabízeným zaměřením poskytne řešiteli dobrou průpravu buťo pro následné získání pozice kvalifikovaného pracovníka v průmyslu nebo pro systematické vedení dalšího výzkumu na vývojovém/výzkumném pracovišti s potřebným chemicko-inženýrským nadhledem. Další informace Doc. Dr. Ing. Tomáš Moucha, budova B VŠCHT Praha, přízemí, místnost T02, emai: tomas.moucha@vscht.cz

Membrány s odolností vůči změnám pH a rozpouštědla pro přesnou separaci podle hraniční molekulové hmotnosti

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Membránové separace v současnosti nabízejí nejlepší strategii pro snižování energetické náročnosti a dopadu na životní prostředí díky nově vyvíjené nanofiltraci s odolností či tolerancí k rozpouštědlu (SRNF či STNF). Takzavaná aktivace rozpouštědlem zahrnuje působení rozpouštědla na stávající membránu díky solvataci, zvýšení ohebnosti polymerního řetězce a uspořádání do vhodných struktur. To bude ověřeno systematickým testováním membrán s různými rozpouštědly pro separaci směsí kapalin. Bude použita vysokokapacitní aparatura pro současné testování mnoha vzorků. Základní fyzikálně chemické vlastnosti vzorků před a po působení rozpouštědel poskytnou náhled do změn na molekulární úrovni. Charakterizace bude zahrnovat absorpci plynu a kapaliny (difuzivitu), ERD (rozptyl pružného zpětného rázu, poskytující prvkovou analýzu přes tloušťku membrány), NMR v pevné vázi (nukleární magnetická rezonance), TGA (termogravimetrická analýza) a DSC (diferenční kalorimetrie). .

Zahraniční partnerská instituce: KU Leuven, Belgium

Microfluidic systems for the synthesis and separation of optically active chemicals

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Mikrofluidní reaktory a separátory jsou moderní zařízení, která představují alternativu ke klasickým vsádkovým a průtočným systémům používaným v biotechnologické praxi. Malé prostorové měřítko zajišťuje reprodukovatelné reakční podmínky a intenzivní sdílení hmoty a tepla. Mikrofluidní zařízení zpravidla postrádají pohyblivé části a dovolují snadné kombinování mnoha jednotkových operací, jako jsou mísiče, separátory, reaktory. Hlavními cíli navrhovaného tématu jsou: Studium kinetiky vybraných enzymových reakcí, které vedou k produkci opticky aktivních látek využívaných ve farmacii, potravinářství nebo při syntéze chemických specialit. Návrh a příprava mikrofluidních separatorů s vloženou membránou nebo sorbentem s uchyceným chirálním selektorem pro dělení racemických směsí. Testování vyrobených mikrofluidních zařízení pro selektivní separaci vybraných opticky aktivních sloučenin. Posouzení možnosti urychlení transportu opticky aktivních látek membránami pomocí vloženého elektrického pole. Školící pracoviště disponuje potřebnými technologiemi pro výrobu mikrofluidních systémů, moderními měřicími přístroji a kvalitní výpočetní technikou. Předpokládá se podíl doktoranda/ky na řešení grantových projektů a aktivní účast na mezinárodních vědeckých konferencích.

Mikrofluidní systémy pro syntézu a separaci opticky aktivních látek

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Mikrofluidní reaktory a separátory jsou moderní zařízení, která představují alternativu ke klasickým vsádkovým a průtočným systémům používaným v biotechnologické praxi. Malé prostorové měřítko zajišťuje reprodukovatelné reakční podmínky a intenzivní sdílení hmoty a tepla. Mikrofluidní zařízení zpravidla postrádají pohyblivé části a dovolují snadné kombinování mnoha jednotkových operací, jako jsou mísiče, separátory, reaktory. Hlavními cíli navrhovaného tématu jsou: Studium kinetiky vybraných enzymových reakcí, které vedou k produkci opticky aktivních látek využívaných ve farmacii, potravinářství nebo při syntéze chemických specialit. Návrh a příprava mikrofluidních separatorů s vloženou membránou nebo sorbentem s uchyceným chirálním selektorem pro dělení racemických směsí. Testování vyrobených mikrofluidních zařízení pro selektivní separaci vybraných opticky aktivních sloučenin. Posouzení možnosti urychlení transportu opticky aktivních látek membránami pomocí vloženého elektrického pole. Školící pracoviště disponuje potřebnými technologiemi pro výrobu mikrofluidních systémů, moderními měřicími přístroji a kvalitní výpočetní technikou. Předpokládá se podíl doktoranda/ky na řešení grantových projektů a aktivní účast na mezinárodních vědeckých konferencích.

Modelování proudění plynů v zařízeních chemické technologie.

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the flow of the fluid, and the interaction of the fluid with surfaces defined by boundary conditions. Initial validation of such software is typically performed using experimental apparatus or pilot and industrial data. The work will be focused on the comparison between more and less approximated mathematical models in the form of case studies. Work will be concerned with several chosen devices, e.g. laminar boxes or electric furnaces with forced or natural convection. The results of modelling will be validated with the available experimental data.

Modelování tepelné degradace dřevěných materiálů při požáru

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: doc. Dr. Ing. Milan Jahoda

Modulární hydrogeloví mikroroboti

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: RNDr. Ivan Řehoř, Ph.D.

Anotace

Miniaturizace robotů na velikost desítek mikronů umožní jejich užití v dosut nepřístupných oblastech, jako je kontrolovaná doprava léčiv, či mikrochirurgie. Ukazuje se, že použití měkkých materiálů, které konají mechanickou práci pomocí deformace je klíčové pro snížení mechatronické náročnosti robotů a umožňuje jejich miniaturizaci, které není možné dosáhnout s tradičními konstrukčními přístupy. V naší skupině jsme nedávno vyvinuli hydrogelové mikroroboty, schopné plait se po podložce a poháněné světlem (https://www.youtube.com/watch?v=PQOXS7f9rDg). Spousta budoucích aplikací takovýchto mikrorobotů předpokládá jejich schopnost autoomní kooperace a schopnost spojovat se do větších funkčních celků. Modulární konektivita individuálních robotů byla experimentálně zkoumána v makroměřítku. Cílem tohoto projektu je zkoumat nové přístupy pro spojován jednotlivých robotů v mikroměřítku, založné na chemickém rozpoznávání. Vzniklé robotické superstruktury budou testovány pro schopnosti vykonávat práci, například schopnost uchopit objekt.

Novel drug delivery systems for steroid-based drugs

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Oleogels for drug delivery

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Pevnost a tekutost granulárních materiálů

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Mechanika granulárních materiálů (písek, jíl, bahno, suť) je jedním z nejcitovanějších problémů v geologii a průmyslové výrobě. Přírodní katastrofy jako jsou zemětřesení nebo sesuvy půdy jsou způsobeny mechanickou nestabilitou granulární sutě. Z pohledu stavebnictví, farmaceutické a chemické výroby je nutné zabývat se mísením a transportem granulárních materiálů, kdy je obvykle vyžadována jejich "tekutost". Cílem této práce je studovat pevnost granulárních materiálů, která charakterizuje přechod ze statického do tekoucího stavu, a porozumět mechanismům, které vedou ke snížení pevnosti. Student bude provádět a analyzovat počítačové simulace granulární vrstvy namáhané smykovými silami. Výhodou virtuálních experimentů je, že umožnují separovat vliv jednotlivých procesů, které ovlivňují pevnost materiálu. Student se zaměří především na možnost degradace pevnosti vlivem porézní tekutiny nebo vnějších oscilací.

Polymerní membrány pro vysoce selektivní odstranění CO2 z bioplynu

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Membránové separace plynů významně přispěly k vývoji energeticky úsporných systémů pro čištění zemního plynu. Také membránové odstraňování CO2 z bioplynu, který ho obsahuje i více než 40 %, zažívá v současnosti rychlý rozvoj. Hlavní výzvou pro polymerní membrány je jejich náchylnost k plastizaci při vysokých koncentracích CO2. Dochází k nabobtnání membrány a zvýšení propostnosti pro CH4, čímž se sníží selektivita. Zesíťování membrány je jedním z nejkepších způsobů, jak zabránit plastizaci. Membrány se smíšenou matricí (MMM), skládající se z plniva rovnoměrně rozmístěného v polymerní matrici, kombinují dobrou zpracovatelnost polymerů s vysokou seperační účinností plniva. Organokovové sítě (MOF) patří mezi materiály s dobře definovanou velikostí a tvarem pórů. V rámci práce budou připraveny membrány typu MMM pro separaci bioplynu se zvýšenou permeabilitu díky výběru vhodné kombinace MOF/polymer a teploty zpracování, využívající MOF materiály s velkou vnitřní porozitou a selektivní povrchovou vrstvou.

Zahraniční partnerská instituce: KU Leuven, Belgium

Programmable drug release from multi-unit pellet systems

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Průtočné milifluidní systémy pro výzkum elektromembránových separačních procesů

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Elektrodialýza a elektrodeionizace jsou široce průmyslově používané separační membránové procesy, které kromě tradičního využití v oblasti odsolování vod, nalézají stále více aplikací v oblasti zpracovávání chemického odpadu, v potravinářství a při produkci chemikálií s přidanou hodnotou. Tyto procesy jsou založeny na použití tzv. iontově-výměnných membrán, jež díky své unikátní vlastnosti, tzv. iontové selektivitě, umožňují separaci vybraných iontů ze zpracovávaných roztoků. Hlavním úkolem této disertační práce bude konstrukce milifluidního elektrodialyzéru, jež bude umožňovat podrobnou experimentální studii různých odsolovacích procesů. Tento milifluidní systém by měl umožnit kromě vlastní elektrochemické charakterizace odsolování též studium koncentračních prostorových změn nastávajících podél diluátového a koncentrátového kanálu a pozorování elektrokinetických jevů odehrávajících se na rozhraní membrány a roztoku s vysokým stupněm odsolení.

Příprava a charakterizace porézních materiálů pro fotokatalytickou konverzi CO2

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Příprava hierarchických struktur a studium jejich interakce s živou buňkou

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: Ing. Viola Tokárová, Ph.D.

Příprava koamorfních pevných forem léčiv

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Příprava nosičů pro dodávání léčiv pro léčbu revmatoidní artritidy

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Studijní program: Léčiva a biomateriály

Příprava nosičů pro doručování léčiv pro sonoterapii

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Příprava porézních materiálů využívající inverzi fází

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: prof. Dr. Ing. Juraj Kosek

Anotace

This is PhD project for a double-degree program. Therefore annotation is provided only in English.

Zahraniční partnerská instituce: KU Leuven, Belgium

Příprava porézních nosičů pro imobilizaci enzymů a jejich aplikace v biokatalýze

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Reakčně transportní procesy probíhajících v iontově-výměnných systémech

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Iontově výměnné systémy nacházejí široké uplatnění v separačních procesech zaměřených na výměnu či oddělování iontových složek ze zpracovávaných roztoků. Typickými procesy, ve kterých se iontově-výměnné systémy využívají ať už ve formě membrán nebo iontově-výměnných loží, jsou elektrodialýza a elektrodeionizace. V současné době, kdy jsou na průmyslové technologie kladeny stále větší nároky ohledně produkce odpadu či optimalizace probíhajících procesů, nacházejí technologie založené na použití iontově-výměnných systémů nové aplikace. V těchto aplikacích se zpracovávají roztoky obsahující různé entity chemického či biologického původu, jež mohou interagovat s daným iontově-výměnným systémem a často přispívat k jeho zanášení. Tato disertační práce bude zaměřena na studium reakčně-transportních procesů probíhajících na iontově-výměnných systémech v přítomnosti vodných elektrolytů o různém složení pomocí experimentálních technik vyvinutých v Laboratoři mikrofluidních technologií na VŠCHT Praha. Kromě studia vlivu vodného elektrolytu na chování iontově výměnných systémů bude též významná část práce věnována rozdílům v tomto chování mezi homogenními a heterogenními iontově-výměnnými systémy.

Robotic compounding line for continuous manufacturing of personalised formulations

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Rychlostní model vícesložkové rektifikace. Experimentální ověření.

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Současné návrhy rektifikačních kolon jsou založeny především na zkušenosti a jsou v podstatě empirické povahy. Vývoj výpočetních technologií přinesl jistá zlepšení zavedením tzv „rate-based“ modelů využívající k popisu numerickou integraci diferenciálních bilancí hybnosti, energie a hmotnosti. Nedostupnost a nespolehlivost koeficientů úměrnosti charakterizujících rychlost procesů zahrnutých v těchto modelech je hlavní brzdou jejich širšího použití. Současné způsoby jejich získávaní přenosem z absorpce na destilaci a z analogie mezi přestupem tepla a hmoty jsou riskantní a při návrhu vyžadují použití velkých bezpečnostních koeficientů. Rovněž Maxwell-Stefanův přístup k výpočtu mezifázových toků hmoty z koeficientů přestupu získaných pro příslušné binární systémy, který je používán k výpočtu koeficientů v multi-komponentních směsích, nebyl dosud experimentálně ověřen. Neexistovala totiž metoda přímého stanovení transportních koeficientů při destilaci. Na našem pracovišti byla vyvinuta a úspěšně testována metodika přímého stanovení transportních koeficientů při destilaci a výrazně tak posílila možnost kritického zhodnocení současných postupů jejich získávání. Cílem disertační práce je ověřit Maxwell-Stefanův přístup k výpočtu koeficientů přestupu hmoty v multi-komponentních směsích z binárních koeficientů. K ověření budou použity koeficienty přestupu hmoty změřené ve třech binárních směsích tvořících ternární směs metanol/etanol/1-propanol a koncentrační profily podél výplně změřené pro tuto ternární směs. Konečným cílem tohoto výzkumu je zpřesnění návrhu kolon na základě simulačních rate-based modelů využitím transportních koeficientů přestupu hmoty změřených přímo v rektifikační koloně.

Stabilizace a řízené uvolňování léčiv pomocí potahování částic účinné látky polymerem

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Studium interakcí bublin a kapek s turbulentním vírem

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: Ing. Jaroslav Tihon, CSc.

Anotace

Disperze kapalina-plyn nebo kapalina-kapalina jsou součástí řady technologických i biotechnologických procesů. Částice tekutiny (bubliny nebo kapky) se v turbulentním proudění kapaliny rozpadají a vytvářejí komplexní vícefázový systém. Pochopení mechanizmu rozpadu částic v turbulentním proudění je důležité, protože teoretické modely popisující tento mechanizmus jsou nezbytné pro numerické modelování složitých vícefázových systémů. Doktorská práce bude zaměřena na experimentální studium dynamického chování bubliny nebo kapky při interakci s toroidním vírem s cílem určit rychlost rozpadu původní částice a distribuci velikostí nově vzniklých částic. Mechanizmus rozpadu bude studován v závislosti na různě zvolených hydrodynamických a fyzikálně-chemických podmínkách systému. Pracoviště je dostatečně vybavené pro studium rozpadu bubliny/kapky v turbulentním proudění. Má k dispozici aparáty pro řízenou tvorbu bublin, toroidního víru i pro tvorbu intenzivní turbulence. Dále disponuje potřebnými řídícími a vyhodnocovacími programy. Požadavky na uchazeče: VŠ vzdělání (magisterský studijní program) v oboru chemického inženýrství nebo strojního inženýrství; schopnost týmové, systematické a tvořivé práce; zájem o experimentální práci.

Studium separace látek z rozpouštědel pomocí membránových procesů

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Cílem doktorandské práce bude studium separace látek z rozpouštědel pomocí membránových procesů. Racemické směsi obsahují stejné množství L a D enantiomerů. Jednotlivé enantiomery mají tytéž fyzikálně-chemické vlastnosti v achirálním prostředí, a proto je velmi obtížné je vzájemně odseparovat. Nicméně v lidském organismu mají L a D enantiomery jiné účinky a D enantiomery mohou být zdraví škodlivé. Ph.D. práce bude zaměřena na vývoj nových membrán a separačních technik pro selektivní separaci enantiomerů z racemických směsí s praktickými aplikacemi, především ve farmaceutickém, potravinářském nebo agrochemického průmyslu, rovněž bude práce zaměřena na odstranění jiných polutantů z vody. U kandidáta doktorské práce bude vyžadováno zpracování podrobné rešerše zahraniční literatury v dané problematice (nutnost aktivní znalosti anglického jazyka), samostatné měření a zpracování výsledků a ve spolupráci se školitelem i napsání publikací do zahraničních periodik.

Studium transportních charakteristik v různých typech bioreaktorů

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: doc. Dr. Ing. Tomáš Moucha

Anotace

Výroba nových produktů v oblasti biotechnologie a farmacie je založena na návrhu bioreaktoru. Výběr vhodného typu bioreaktoru je klíčový s ohledem na maximální výtěžek, ale také je limitován životností přítomných mikroorganismů. Cílem doktorského studia je porovnat návrhové parametry (transportní charakteristiky) tří typů nejčastěji používaných bioreaktorů. Výsledky práce budou sloužit k charakterizaci rozdílů a podobností jednotlivých typů bioreaktorů z hlediska distribuce plynu, přenosu hmoty a promíchávání v závislosti na celkové energii dodávané do systému. Transportní charakteristiky budou získány experimentálně pro modelové vsádky, které budou navrženy na základě fyzikálních vlastností reálných médií. Obě spolupracující pracoviště jsou dostatečně vybavené a celkem disponují třemi typy bioreaktorů i) mechanicky míchaný reaktor, ii) probublávaná kolona a iii) air-lift reaktor. Všechny typy reaktorů jsou uzpůsobené pro měření transportních charakteristik stejnými a tudíž srovnatelnými metodami. Požadavky na uchazeče: VŠ vzdělání (magisterský studijní program) v oboru chemického inženýrství, strojního inženýrství, organické technologie, biotechnologie a podobných oborech; schopnost týmové, systematické a tvořivé práce; zájem o experimentální práci. Další informace Doc. Tomáš Moucha, budova B VŠCHT Praha, přízemí, místnost T02, e-mail: tomas.moucha@vscht.cz

Syntéza a charakterizace částic s imuno-adhesivními vlastnostmi

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Transformace aerosolových částic vlivem změn v plynném prostředí

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: Ing. Vladimír Ždímal, Dr.

Anotace

Aerosolové částice jsou v atmosféře všudypřítomné a ovlivňují mnoho dějů na Zemi, od globálního oteplování po lidské zdraví. Nacházejí se převážně v chemické a fuzikální rovnováze se svým okolím, ale kvůli kontinuálním změnám v atmosféře nebo během jejich transportu např. do našich plic se během své doby života mění. Proto je nutné studovat jejich chování při změnách prostředí, aby bylo možné předpovědět jejich osud a transformace, když se dostanou do atmosféry a/nebo v ní vzniknou. Studie bude provedena za použití nově vyvinutého systému laminárních reaktorů, které umožní kontrolovat vlastnosti okolního prostředí částic. Jevy budou studovány za použití pokročilých metod aerosolové instrumentace včetně on-line chemické a fyzikální charakterizace částic aerosolovým hmotnostním spektrometrem.

Triboelektrické cesty přispívající k separaci a recyklaci plastového odpadu

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: prof. Dr. Ing. Juraj Kosek

Tvorba koloidů léčiv v gastrointestinálním traktu a jejich charakterizace

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Tvorba mikrostrukturovaných materiálů metodami samoskladby

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: RNDr. Ivan Řehoř, Ph.D.

Anotace

Samoskladba je spontánní uspořádávání jednotek - stavebních bloků - do uspořádaných struktur. Uspořádaná struktura má nejnižší energii ze všech možných uspořádání stavebních bloků a snižování této energie je je hybnou silou samoskladby. Uspořádání vzniklé struktury je určeno vlastnostmi stavebních bloků, jejich tvarem, materiálovou anizotropíí, povrchovými vlastnostmi atd. Ladění těchto vlastností tak, aby byla dosažena chtěná struktura může být nazíráno jako programování a je jednou z možností jak konstruovat mikro a nanostrukturované materiály. Otázka velikosti je při samoskladbě klíčová, zatímco malé stavební bloky (pod 2 mikrony) jsou schopny minimalizovat svoji energii v průběhu samoskladby díky brownovskému pohybu, který jim umožňuje měnit vzájemnou pozici a orientaci. Větší stavební jednotky to nedokáží a mají proto tendeci v průběhu samoskladby zamrzat v nerovnovážných pozicích.
Nedávno jsme představili postupy, které umožňují uspořádávat anizotropní hydrogelové mikročástice do uspořádaných 2D struktur. Vyvinuli jsme nové mechanismy, umožňující kontrolovat orientaci stavebních bloků během samoskladby a tím překonávat lokální minima kinetické energie. Uspořádané částice mohou být posléze spojeny pomocí kovalentních vazeb jednotlivých mikročástic. Získané struuktury mají využití v mikrorobotice, v přípravě metamateriálů i v tkáňovém inženýrství. Cílem dizertační práce je dále rozvíjet metody samoskladby hydrogelových mikročástic, kombinovat je s přímým uspořádáváním pomocí mobilních mikrorobotů vyvinutých v našem týmu (https://www.youtube.com/watch?v=PQOXS7f9rDg) a používal vzniklé struktury ve výše zmíněných aplikacích.

Virtuální návrh a testování porézních katalyzátorů a filtrů pomocí víceúrovňových matematických modelů

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: doc. Ing. Petr Kočí, Ph.D.

Anotace

Práce se zabývá vývojem pokročilých matematických modelů porézních katalyzátorů a filtrů pro čištění výfukových plynů, které mohou být použity pro virtuální návrh takového zařízení. Modely jsou vyvíjeny převážně v CFD prostředí OpenFOAM a zaměří se jak na procesy během přípravy katalytických filtrů (vliv parametrů při nanášení suspenze katalyzátoru do porézního substrátu a sušení), tak i na vliv výsledné struktury na provozní vlastnosti zařízení (simulace toku plynu, difúze, katalytické reakce, filtrace pro předpovězení tlakové ztráty, konverze a filtrační účinnosti). Zkoumané děje jsou modelovány podrobně na úrovni pórů stěny a jednotlivých částic a pak také na úrovni kanálků celého reaktoru. Trojrozměrná struktura porézních materiálů je počítačově rekonstruována na základě snímků z rentgenové tomografie (XRT) a elektronových mikroskopů. Výsledky modelů jsou ověřovány pomocí dostupných experimentálních dat z laboratorního reaktoru.

Vliv vlastností mezifázového rozhraní na dynamiku bublin a kapek

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Vícefázové systémy tvořené přítomností plynné fáze či kapalné fáze v kapalném prostředí, jako jsou pěny, emulze jsou všudypřítomné, jak v přírodě a živých systémech, tak i v průmyslových aplikacích s vysokou přidanou hodnotu např. ve farmacii, kosmetice. Přítomnost povrchově aktivních látek (PAL) mění chování mnoha procesů, přičemž pro systémy v pohybu je třeba mezifázová rozhraní charakterizovat i jinak než prostým povrchovým napětím – např. méně běžnou povrchovou reologií a adsorpčně/desorpčními charakteristikami. Cílem práce je experimentální stanovení vlivu PAL na dynamiku procesů u bublin a kapek (pohyb, rozpouštění, rozpad, koalescence apod.) spolu s charakterizací vybraných PAL s pomocí vhodných fyzikálně-chemických a transportních vlastností. Typická práce zahrnuje měření povrchovým reometrem, pozorování jevů u bublin a kapek s pomocí rychloběžné kamery, stavbu jednoúčelových drobných zařízení pro prováděné experimenty a interpretaci získaných výsledků.

Vliv vlastností proteinů na jejich agregační chování a stabilitu během lyofilizace

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Vývoj 3D buněčných kultur pro testování nosičů léčiv

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Vývoj metodiky zvětšování měřítka (scaling-up) průmyslových míchaných reaktorů

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská
Vedoucí práce: doc. Dr. Ing. Tomáš Moucha

Anotace

Mezi zařízení často v průmyslu používaná k intenzifikaci kontaktu plynu a kapaliny patří mechanicky míchané nádoby. Příkladem průmyslových aplikací takových zařízení mohou být kromě aerobních fermentací (kdy hovoříme o fermentoru) rovněž chlorace nebo hydrogenace (kdy hovoříme o vícefázovém míchaném reaktoru). V mnoha případech je produkční kapacita zařízení dána rychlostí absorpce či desorpce plynu do/z kapaliny (například limitace kyslíkem, či odvodem produkovaného CO2), tj. slovy chemického inženýrství dějem určujícím rychlost celého procesu je mezifázový transport hmoty mezi plynem a kapalinou. Klíčovým parametrem při návrhu takových zařízení je potom objemový koeficient přestupu hmoty kLa. Cílem výzkumu je nalézt metodiku návrhu průmyslových zařízení pro procesy, ve kterých je rychlost určujícím dějem mezifázový transport hmoty. Jedná se o návrhy na základě dat měřených v zařízeních laboratorního a poloprovozního měřítka, tedy o formulaci pravidel pro scaling-up. Za tímto účelem byla v laboratorních nádobách průměru 20 a 30 cm již dříve provedena rozsáhlá měření příkonu, zádrže plynu a objemového koeficientu přestupu hmoty v různých typech vsádek (koalescentní, nekoalescentní, viskózní) a s různými typy míchadel (různé směry čerpání od radiálního k axiálnímu) včetně uspořádání s kombinací více míchadel na společné hřídeli. V posledních letech jsou vedeny experimenty na poloprovozní aparatuře s nádobou průměru 60 cm se třemi míchadly na společné hřídeli. Aparatura je vybavena moderním software řízení a sběru dat používaným v průmyslu. V poloprovozní nádobě byla provedena měření s čistou vodou a s roztokem síranu sodného, což reprezentuje koalescentní a nekoalescentní vsádku. Nyní jsou vedeny experimenty ve vsádce s vyšší viskozitou, neboť takové vsádky se vyskytují v mnoha biochemických výrobách. V mnoha aplikacích se také jedná o suspenze s mikroorganismy, jejichž kolonie tvoří významný podíl pevné fáze ve vsádce, čímž ovlivňují hodnoty transportních charakteristik. Je proto třeba proměřit transportní charakteristiky za těchto situací. Cílem doktorské práce je opatřit soubor transportních charakteristik měřením na poloprovozní nádobě, kde bude použita kapalná vsádka s vyšší viskozitou odpovídající kapalinám v biochemických výrobách, a v nádobě průměru 30 cm za přítomnosti pevných částic. Z transportních charakteristik budou proměřovány příkon míchadel, zádrž plynu a objemový koeficient přestupu hmoty, kLa. Na základě analýzy dat změřených na zařízeních různých velikostí bude hledána metodika využití dat z laboratorního zařízení k návrhu zařízení průmyslové velikosti. Doktorand se seznámí s matematickými modely mezifázového transportu hmoty, s měřícím a řídícím software používaným v průmyslu a se způsoby měření mezifázového transportu hmoty ve větší šíři, neboť bude pracovat v kolektivu zabývajícím se také návrhy destilačních a absorpčních kolon a bublaných kolon s ejektorem. Další informace: Tomáš Moucha, tel. 2044 3299, budova B, přízemí, č.dv. T02a, e-mail mouchat@vscht.cz

Vývoj vysoce výkonných flexibilních superkapacitorů na bázi nanocelulózy a vodivýchpolymerůPoskytovatel

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

Anotace

Cílem tohoto projektu je navrhnout nový typ pružných a lehkých elektrod založených na udržitelných materiálech. Elektrody budou následně využity ve vývoji výkonných superkapacitorů s ohebnou strukturou a vysokou kapacitou. Přírodní celulózová nanovlákna (CNF) budou kombinována s elektricky vodivými polymery (ECP) a deriváty grafenu a následně využita jako matrice pro přípravu elektrod superkapacitorů s využitím přístupu „bottom-up“. CNF zajistí funkci mechanického skeletu schopného vysoké deformace a rovněž funkci šablony pro chemickou funkcionalizaci povrchu elektrod. Zkoumány budou také nové způsoby kompatibilizace polymerů a nanoplniv s cílem spojit vzájemně odlišné materiály s různými vlastnostmi do formy porézních elektrod na bázi CNF-ECP, které se budou vyznačovat optimální morfologií a vlastnostmi. Elektrody vykazující nejlepší kapacitu, pružnost a tepelnou stabilitu budou použity při přípravě a testování prototypů superkapacitorů.

Řízení vlastností krystalů léčiv během krystalizace a jejich dopad na následné jednotkové operace

Garantující pracoviště: Ústav chemického inženýrství, Fakulta chemicko-inženýrská

VŠCHT Praha
Technická 5
166 28 Praha 6 – Dejvice
IČO: 60461373
DIČ: CZ60461373

Datová schránka: sp4j9ch

Copyright VŠCHT Praha 2014
Za informace odpovídá Oddělení komunikace, technický správce Výpočetní centrum
zobrazit plnou verzi