Počkejte prosím...
Chemistry and Chemical Technologies

Chemistry and Chemical Technologies

Doktorský program, Fakulta chemické technologie
CHYBI CHARAKTERISTIKA PROGRAMU

The study programme aims at the scientific education of graduates based on their quality theoretical knowledge and previous knowledge experience with independent solution of partial research problems in the field of applied chemistry and chemical technology. Students extend their theoretical knowledge of chemistry, physical chemistry and chemical engineering. This knowledge is further developed by means of independent professional work in the field of chemical technology, which enables the students to deepen theoretical knowledge and to gain experience with the application in implementation-specific technological projects. The scientific education itself also includes a complex research project related to chemical technology, which leads to obtaining the original published knowledge of a general nature. Students taking part in elective courses and implementing their own research projects specialise in inorganic and organic technology, homogeneous and heterogeneous catalysis, photocatalysis, heterogeneous non-catalysed reactions, membrane processes, technical electrochemistry, chemical specialties and hydrogen technologies. Graduates of the doctoral study are ready to find employment in the design and optimization of chemical technologies in leading positions in companies engaged in the production or processing of chemicals, in research and development institutions, in state administration and in companies linked to technical chemistry, e.g., civil engineering and automotive industry.

Uplatnění

A graduate of the programme is fully qualified to occupy a leading position in the field of design, development and optimization of chemical technologies as well as for the management of chemical operations, distribution and application of chemical products on the market. The graduate is able to assess the impacts of these activities on the environment and human health. He/she is also fully prepared and qualified for independent research and development activities in the field of chemical technologies using the broad theoretical basis and his/her own experience in obtaining experimental and theoretical data, their critical evaluation and processing, and drawing conclusions of a general nature.

Detaily programu

Jazyk výuky Anglický
Standardní doba studia 4 roky
Forma studia Prezenční
Garant studia prof. Dr. Ing. Karel Bouzek
Kód programu AD101
Místo studia Prague
Kapacita 10 studentů
Počet vypsaných prací 22

Vypsané disertační práce

Efekt dvoudimenzionálního nosiče na katalytickou aktivitu nosičových katalyzátorů

Garantující pracoviště: Ústav organické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: Ing. Martin Veselý, Ph.D.

Anotace

Dvoudimenzionální (2D) materiály, a grafen jako jejich typický zástupce, se jeví jako vhodný katalytický nosič. Takové nosičové katalyzátory vykazují zvýšení katalytické aktivity oproti katalytické aktivitě na konvenčních nosičích a to díky specifickým interakcím mezi kovovými aktivními centry a 2D nosičem. Projekt je zaměřen na porozumění těmto interakcím u 2D nosičů na bázi grafenu a jeho „pokračovatelů“ odvozených od fosforu, arsenu, antimonu a bismutu. K navržení mechanismu specifických interakcí bude využito časově a prostorově rozlišitelné sledování katalytické aktivity na cíleně litograficky a chemicky připravených kovových aktivních centech na 2D nosiči. Cílený design morfologie a prostorového rozložení aktivních center umožní identifikovat jednotlivé vlivy způsobující zvýšenou katalytickou aktivitu, a to včetně exkluzivního vlivu 2D nosiče. Navržený mechanismus specifické interakce, který bude dále ověřen standardními metodami měření aktivity katalyzátorů, přinese nový náhled na vysokou aktivitu nosičových katalyzátorů připravených na 2D nosičích.

Elektrochemická syntéza hypervalentních sloučenin jódu jako vysoce selektivních organických oxidačních činidel

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie

Anotace

Vysoce selektivní oxidace organických látek patří, zejména v případě látek s vysokou přidanou hodnotou, mezi velmi atraktivní procesy. V současné době jsou tyto reakce nejčastěji uskutečňovány pomocí oxidačních činidel obsahujících toxické ionty přechodných kovů jako je Cr(VI), Mn(VII), Ru(VI) či Os(VIII). Vhodnou ekologicky nezávadnou alternativu k těmto oxidantům představují organické látky obsahující ve své struktuře hypervalentní atom jódu. Tématem práce bude studium elektrochemického chování těchto látek a jejich prekurzorů s cílem využít elektrochemickou oxidaci při jejich produkci a umožnit tak rozšíření aplikace hypervalentních sloučenin jódu jako oxidačních činidel také do průmyslového měřítka.

Elektrochemické metody úpravy procesních vod

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie

Anotace

Elektrochemické metody jsou pro svou jednoduchost a vysokou účinnost vhodné pro úpravu procesních vod. Hlavní nevýhodou je zpravidla vyšší cenová náročnost. Elektrochemické metody tak nalézají uplatnění především při úpravě silně zasolených ev. jinak kontaminovaných vod, kde biochemické postupy selhávají. Aplikace jednotlivých metod je třeba optimalizovat s ohledem na konkrétní složení zpracovávaných vod.

Elektrolýza vody jako zdroj vodíku pro energetické účely

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: prof. Dr. Ing. Karel Bouzek

Anotace

Elektrolýza vody představuje nedílnou součást vodíkové ekonomiky jako přístupu k budoucímu zabezpečení lidské společnosti elektrickou energií. Stávající průmyslově využívané technologie však trpí zásadními nedostatky. Zejména pak relativně nízkou energetickou účinností a omezenou flexibilitou. Proto je tomuto problému v současnosti věnována široká pozornost celé řady pracovišť. Mezi hlavní studované problémy patří kinetika elektrodových dějů, absence vhodných elektolytů a omezená korozní stabilita konstrukčních materiálů. Významný problém představuje rovněž celkové uspořádání procesu.

Inaktivace mikroorganismů a odstraňování persistentních polutantů ve vodách pomocí pokročilých oxidačních procesů

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: prof. Dr. Ing. Josef Krýsa

Anotace

Budou aplikovány systémy UV/peroxid vodíku (kontinuální dávkování nebo elektrochemická generace in situ) a UV/fotokatalyzátoru. Jako mikroorganismy budou studovány (samostatně nebo v kombinaci) gram-pozitivní bakterie (Escherichia coli, Pseudomonas aeruginosa) a gram-negativní (Enterococcus faecalis, Staphylococcus aureus). Ty se běžně vyskytují ve vodách a navíc modelují dobře mikroorganismy (Pseudomonas.. .a Staphylococcus...), které jsou i) často ve vodách bazénů ii) jsou odolnější vůči dezinfekci nebo iii) snadno vytvářejí biofilmy. K dosažení nejvyšší efektivity budou optimalizovány podmínky obou procesů. Procesy budou sledovány i z hlediska účinnosti pro odbourávání modelových polutantů vod.

Katalytická transformace methanu na produkty vyšší užitné hodnoty

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie

Anotace

V současné době je věnována značná pozornost transformaci metanu popř. nižších uhlovodíků ze zemního plynu a bioplynu na produkty vyšší užitné hodnoty. Jedná se např. o procesy neoxidativní katalytické aromatizace metanu, selektivní oxidace metanu na metanol nebo dimethyl ether, apod. V rámci této práce bude vyvíjen vhodný katalyzátor pro vybraný proces. Bude studován vliv reakčních podmínek, vliv nosiče a procedury tvorby aktivní fáze na dosaženou konverzi methanu, stabilitu katalyzátoru a výtěžky produktů.

Katalyzátory pro alkalická zařízení konverze energie

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: Ing. Jaromír Hnát, Ph.D.

Anotace

Alkalické technologie konverze energie představují jednu z možných cest zvýšení využití instalovaných obnovitelných zdrojů elektrické energie. Výhodou této technologie oproti konkurenčním přístupům je možnost využití neplatinových katalyzátorů. Nevýhodou je nižší dosahovaná intenzita produkce vodíku, či elektrické energie. Tato práce zahrnuje syntézu a optimalizaci nových katalyzátorů, jejich testování standardními technikami, ale také testování za komplexních podmínek v zařízení pro konverzi elektrické energie.

Kinetika katalytického rozkladu N2O na zeolitických katalyzátorech

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie

Anotace

Předmětem práce je studium kinetiky rozkladu N2O na zeolitických katalyzátorech strukturních typů MFI, FER a titanosilikátech obsahujících Fe a další přechodové kovy. Práce bude zaměřena na kinetická měření s cílem vyvinout spolehlivý kinetický model vhodný pro návrh průmyslových zařízení.

Kompositní materiály/povlaky na bázi TiO2 pro fotokatalytické procesy v plynné fázi

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: prof. Dr. Ing. Josef Krýsa

Anotace

Znečištění vzduchu představuje významný problém, k jehož řešení lze výhodně využít fotokatalytické procesy. Náplní této disertační práce je příprava nových fotokatalyticky aktivních kompositních materiálů na bázi TiO2 a stanovení jejich adsorpčních a fotokatalytických vlastností. Cílem je získat materiál mající současně dobré adsorpční vlastnosti a současně i vysokou schopnost odbourávat nežádoucí těkavé látky ve vzduchu. Součástí práce bude využití standardních ISO testů pro sledování kinetiky oxidačních reakcí (NOx, VOC) na povrchu připravených fotokatalyzátorů. Významnou částí je charakterizace materiálů/povlaků (RTG, SEM, BET, Ramanova spektroskopie) a dále vývoj/modifikace metod testování fotooxidačních vlastností připravených materiálů/povlaků pro účely čištění vzduchu.

Matematické modelování chemických a membránových procesů v prostředí universálních simulačních programů

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie

Anotace

Univerzální simulační programy představují vhodný nástroj pro návrh nových a optimalizaci stávajících průmyslových technologií. V rámci této práce budou vyvinuty statické a dynamické modely vybraných pokročilých membránových nebo chemických technologií popř. jejich částí v prostředí univerzálních simulátorů umožňující studovat chování těchto technologií pomocí počítačového experimentu. Součástí práce bude verifikace vyvinutých modelů na základě provozních dat s cílem navrhnout změny (strukturální a parametrické) ve studované technologii sledující zlepšení ekonomických a ekologických ukazatelů.V práci budou využívány převážně univerzální simulační programy firmy Aspen Technology.

Matematické modelování elektrochemických systémů

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: Ing. Roman Kodým, Ph.D.

Anotace

Matematické modelování představuje výjimečně silný nástroj k hlubšímu pochopení funkce elektrochemických zařízení a k jejich následné optimalizaci. V rámci tohoto tématu se pozornost zaměří na matematický popis distribuce lokálních hodnot potenciálu a následně přenosu hmoty v elektrickém poli. Budou navrženy a implementovány matematické modely systémů s praktickým významem.

Oxidy titanu a titanáty pro pokročilé aplikace

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: Ing. Jan Šubrt, CSc.

Anotace

Li-ion baterie jsou jedním z nejslibnějších elektrochemických zdrojů energie. Materiály na bázi Ti, jako Li4Ti5O12, Li2Ti3O7, TiO2-B a H2Ti3O7, jsou považovány za důležité anody pro lithium-iontové baterie kvůli jejich vysoké bezpečnosti a vynikající cyklické stabilitě. Li-iontová baterie (LIB) (obvykle využívající uhlíkové materiály jako anodu) čelí výzvám, pokud jde o převzetí hybridních elektrických vozidel a stacionárních zdrojů energie. Sloučeniny na bázi Ti, zejména Li4Ti5O12, byly prokázány jako nejslibnější anodové materiály, protože vykazují vynikající cyklickou reverzibilitu a vysoké provozní napětí pro zajištění zvýšené bezpečnosti. Rychlost těchto materiálů na bázi Ti je však relativně nízká kvůli velké polarizaci při vysokých rychlostech nabíjení a vybíjení. Ke zvýšení elektrické vodivosti byly použity dopování, povrchové modifikace a iontová difuzivita vytvořením různých nanomateriálů. Bude použit nový způsob přípravy založený na extrakci síranových iontů z krystalů titanylsulfátu a jejich nahrazení hydroxylovými skupinami ve vodném alkalickém roztoku. Metoda vede k nanostrukturované kyselině metatitaničité nebo alkalickým titanátům.

Polymerní elektrolyty v zařízeních pro konverzi energie

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: Ing. Jaromír Hnát, Ph.D.

Anotace

Polymerní iontově selektivní materiály nacházejí široké uplatnění v celé řadě technologií od ochrany životního prostředí, přes potravinářský průmysl až k průmyslové výrobě základních chemických látek. Zařízení pro konverzi energie představují jedno z nedávných, avšak stále významnějších odvětví, kde se polymerní iontově selektivní materiály mohou s výhodou využívat. Práce je zaměřena na fyzikálně chemickou i elektrochemickou charakterizaci vývojových typů polymerních iontově selektivních elektrolytů.

Příprava a charakterizace hybridních membrán pro separace plynů

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie

Anotace

Membránová separace plynů představuje jednu z perspektivních a energeticky úspornějších alternativ k některým v současnosti používaným separačním procesům (PSA, TSA apod.) V rámci této práce budou syntetizovány a charakterizovány hybridní membrány polymer-plnivo, které spojují výhody mikroporézních a polymerních membrán. Jako plniva bude využíváno mikroporézních materiálů na bázi ZIF-8, silikalitu-1, ETS, FAU, TS-1, AFX, MOF, které budou kombinovány s polymery na bázi polyimidů. Základním problémem při přípravě těchto materialů je zajištění mezifázové adheze plniva a matrice, neboť nedostatečná adheze snižuje pevnost a selektivitu membrány. Cílem práce je studium možností modifikace mirkoporézní fáze a polymeru tak, aby bylo dosaženo vysoké adheze polymer-plnivo. U připravených membrán bude studován vliv těchto modifikací na jejich separační vlastnosti v soustavách vybraných uhlovodíků, CO2 a H2.

Příprava nanovlákenných nosičů pro depozici nanočástic katalyzátorů a imobilizaci živých buněk

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: Ing. Karel Soukup, Ph.D.

Anotace

Hlavním cílem navrhované disertační práce je vyhodnocení významu specifických vlastností nových polymerních nanovlákenných materiálů připravených technikou elektrostatického zvlákňování pro jejich využití jako účinných nosičů katalyticky aktivních složek a tkáňových buněk. Další oblasti zkoumání, na které se zaměřuje tento projekt, budou zahrnovat optimalizaci procesních parametrů elektrostatického zvlákňování vzhledem k vlastnostem připravovaných nosičů, nanášení katalyticky aktivních center nebo jejich prekurzorů a imobilizaci tkáňových buněk. Dále bude provedeno posouzení vlivu mikrostruktury nosičů na fenomenologickou kinetiku modelových reakcí a adhezi a růst buněk. Studované modelové reakce budou zahrnovat jak reakci v plynné fázi (úplná oxidace těkavých organických sloučenin), tak v kapalné fázi (selektivní hydrogenace organických nenasycených sloučenin).

Samočistící a desinfikující povlaky na bázi TiO2 a ZnO

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: prof. Dr. Ing. Josef Krýsa

Anotace

Hlavní náplní práce je příprava fotokatalyticky aktivních povlaků/ nátěrů na bázi TiO2 a ZnO aplikací různých metod na vhodných podkladech (např. keramika, sklo, kovy, omítky, betonové stěrky). Významnou částí je charakterizace filmů (RTG, SEM, Ramanova spektroskopie) a vývoj metod umožňujících testování fotooxidačních, hydrofilních a antibakteriálních vlastností připravených vrstev. Studovanými parametry budou především metoda nanášení prekurzoru (ponoření, stříkání), dále vliv pojiva a substrátu.

Studie degradačních dějů ve středněteplotním palivovém článku typu PEM

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie

Anotace

Pozornost celé řady světových pracovišť zabývajících se problematikou palivových článků typu PEM se snaží vyřešit problém zvýšení jejich provozní teploty na hodnotu vyšší než 100 °C. Veškeré dosud prakticky používané systémy jsou založeny na bazickém polymerním elektrolytu impregnovaném přebytkem kyseliny fosforečné. Jako katalytická vrstva pak slouží struktury založené na polymerem vázaných Pt částicích fixovaných na uhlíkovém nosiči. Zásadní nevýhodu tohoto uspořádání představuje vysoká korozní agresivita kyseliny fosforečné za používaných provozních teplot. Bližší pochopení a popis těchto dějů tak představuje klíčový problém pro další optimalizaci a budoucí aplikaci těchto systémů.

Superkritická impregnace přírodních extraktů do polymerů

Garantující pracoviště: Ústav organické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: Ing. Marie Sajfrtová, Ph.D.

Anotace

Účinné látky se do polymerů zabudovávají různými impregnačními technikami. Nevýhody konvenčních metod impregnace, jako jsou nízká difuzivita, dlouhá doba kontaktu, vysoká spotřeba rozpouštědel i přísad, případně vysoká provozní teplota, mohou být překonány použitím superkritického CO2 (scCO2) jako rozpouštědla. Kromě toho, že je šetrný k životnímu prostředí, snadno proniká díky jeho vysoké difuzivitě, nízké viskozitě a téměř nulovému povrchovému napětí do různých matric. Další výhodou CO2 je, že je při pokojové teplotě a tlaku plynný, tudíž výsledná polymerní matrice neobsahuje žádné zbytky rozpouštědla. Cílem této práce je použít scCO2 jako rozpouštědlo pro impregnaci přírodních zdraví prospěšných látek do polymerní matrice a otestovat vliv provozních podmínek (tlak, teplota, hmotnostní poměr extraktu: scCO2, typ matrice a doba impregnace) na její účinnost.

Vysoce efektivní elektrochemická redukce CO2 - nevyčerpatelný zdroj jednoduchých organických sloučenin

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: prof. Dr. Ing. Karel Bouzek

Anotace

Elektrochemická redukce CO2 v "zero-gap" uspořádání představuje vysoce efektivní a ve spojení s obnovitelnými zdoji energie také nevyčerpatelný zdroj jednoduchých organických sloučenin jako jsou kyselina mravenčí, formaldehyd či methanol, které jsou základem řady zavedených chemických technologií. V rámci práce bude detailně řešena tématika redukce CO2 a optimalizace jednotlivých komponent elektrolyzéru (elektrody, katalyzátory, membrána, celková konstrukce) a jeho provozu.

Vysokoteplotní elektrolýza vody

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie

Anotace

Vysokoteplotní elektrolýza vody představuje moderní, vysoce perspektivní proces úzce spojený s problematikou optimalizace provozního režimu jednotek produkce elektrické energie, které jsou v současnosti využívány k regulaci zátěže distribuční sítě. Tato regulace je nezbytná vzhledem k narůstajícímu podílu nestabilních obnovitelných zdrojů připojitelných do distribuční sítě.

Vývoj a optimalizace komponent svazku palivových článků typu PEM

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: prof. Dr. Ing. Karel Bouzek

Anotace

S rozvojem pokročilých katalyzátorů a konstrukčních materiálů vyvstává otázka jejich dopadu na chování palivových článků pro různá konstrukční uspořádání. Cílem této práce bude optimalizovat zejména konstrukci a konstrukční materiály bipolárních desek pro svazky palivových článků využívajících dva odlišné typy katalyzátoru a ověřit výsledky v rámci svazků laboratorních rozměrů, tj. o výkonech v řádu stovek wattů. Bude rovněž ověřena možnost využití svazku v návazné aplikaci zaměřené na malou mobilní jednotku poháněnou energií generovanou tímto palivovým článkem.

Získávání vodíku z vody slunečním světlem

Garantující pracoviště: Ústav anorganické technologie, Fakulta chemické technologie
Dále nabízena v programu: Chemie a chemické technologie
Vedoucí práce: prof. Dr. Ing. Josef Krýsa

Anotace

Získávání vodíku jako alternativního zdroje/nosiče energie je v současné době velmi významným a intenzivně studovaným procesem. Jednou z možností je jeho přímá produkce z vody pomocí slunečního světla. Tématem této disertační práce je příprava polovodičových fotoanod a fotokatod pro fotoelektrochemický rozklad vody. Budou použity různé metody přípravy (aerosolová pyrolýza, sprejová pyrolýza,…), řada technik charakterizace (RTG, GDS, UV-VIS, BET, SEM) a stanoveny fotoelektrochemické vlastnosti (potenciál otevřeného obvodu, fotoproud, IPCE). Pozornost bude věnována vlivu složení, krystalické struktury, tloušťky a porosity vrstvy. Nejslibnější fotoanody a fotokatody budou aplikovány v tandemovém solárním fotoelektrochemickém článku a stanovena účinnost pro rozklad vody slunečním světlem na vodík a kyslík.


VŠCHT Praha
Technická 5
166 28 Praha 6 – Dejvice
IČO: 60461373
DIČ: CZ60461373

Datová schránka: sp4j9ch

Copyright VŠCHT Praha 2014
Za informace odpovídá Oddělení komunikace, technický správce Výpočetní centrum
zobrazit plnou verzi