Počkejte prosím...
Data pro 2019/2020

Fourierova transformace pro studenty bakalářského studia

Kredity 5
Rozsah 2 / 2 / 0
Examinace Z+Zk
Jazyk výuky čeština
Úroveň []
Garant RNDr. Pavel Pokorný, Ph.D.
Elektronické materiály dostupné v e-learningu VŠCHT

Anotace

Cílem předmětu je seznámit studenty s fyzikální motivací, zavedením, vlastnostmi a různými možnostmi použití Fourierovy transformace, diskrétní FT, rychlé FT, jedno a vícerozměrné FT, inverzní FT, konvoluce, dekonvoluce, teorie distribucí, zejména Diracovy delta distribuce a rozkladem na singulární hodnoty (SVD), a to jak na počítači, tak ručně, zejména s ohledem na zpracování signálu, např. zvukového, obrazového a z infračervené spektroskopie.

Sylabus


1. Základní pojmy, periodické funkce, konvoluce.

2. Diracova delta funkce, základní vlastnosti, diskretizace spojitého signálu.

3. Definice Fourierovy transformace, její vlastnosti.

4. Fourierova tranformace Diracovy delta funkce a periodických funkcí.

5. Signály konečné délky. Přístrojová křivka.

6. Metoda apodizace a dekonvoluce.

7. Vliv diskretizace signálu na spektrum, aliasing.

8. Diskrétní Fourierova transformace, její definice a základní vlastnosti.

9. Metoda "zero-filling".

10. Rychlá Fourierova transformace, princip a použití.

11. Teorie distribucí, regulární a singulární distribuce.

12. Fourierova transformace distribucí.

13. Fourierovy řady.

14. Vztah mezi Fourierovou transformací a Fourierovou řadou.

Literatura

Z:Klíč, Volka, Dubcová: Fourierova transformace s příklady z infračervené spektroskopie. VŠCHT Praha 2002, 80-7080478-5.

VŠCHT Praha
Technická 5
166 28 Praha 6 – Dejvice
IČO: 60461373
DIČ: CZ60461373

Datová schránka: sp4j9ch

Copyright VŠCHT Praha 2014
Za informace odpovídá Oddělení komunikace, technický správce Výpočetní centrum
zobrazit plnou verzi